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1. Introduction

The find-path problem is well known in robotics. Given an object with an initial

location and orientation, a goal location and orientation, and a set of obstacles located in

space, the problem is to find a continuous path for the object from the initial position to

the goal position which avoids collisions with obstacles along the way. This paper presents

a new representation for free space, as natural "freeways" between obstacles, and a new

algorithm to solve find-path using that representation. The algorithm's advantages over

those previously presented are that it is quite fast and it finds good paths which generously

avoid obstacles rather than barely avoiding them. It does not find possible paths in ex-

tremely cluttered situations but it can be used to provide direction to more computationally

expensive algorithms in those cases.

1.1 Approaches to the Find-Path problem.

A common approach to the find-path problem, used with varying degrees of sophistica-

tion, is the configuration space approach. Lozano-P~rez [5] gives a thorough mathematical

treatment of configuration space. The idea is to determine those parts of free space which

a reference point of the moving object can occupy without colliding with any obstacles.

A path is then found for the reference point through this truly free space. Dealing with

- rotations turns out to be a major difficulty with the approach - requiring complex geometric

algorithms which are computationally expensive.

Conceptually one can view configuration space as shrinking the object to a point while

at the same time expanding the obstacles inversely to the shape of the moving object. This

approach works well when the moving object is not allowed to rotate. If it can rotate then

the grown obstacles must be embedded in a higher dimensional space - one extra dimen-

sion for each degree of rotational freedom. Furthermore the grown obstacles have non-

planar surfaces, even when the original problem was completely polygonal or polyhedral.

Typically implementors have approximated the grown obstacles in order to be able to deal

with rotations.
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Moravec [6] had to solve the find-path problem in two dimensions. lie bounded all

obstacles and the moving object by circles. Then the grown obstacles were all perpendicular

cylinders and the problem could be projected back into two dimensions where rotations

could be ignored. This method missed all paths that required rotational manouevering.

Lozano-Pirez 15] split the rotation range into a fixed number of slices, and within each

slice bounded the grown obstacles by polyhedra. Earlier Udupa (8] had used much cruder

bounding polyhedra in a similar way.

Recently Brooks and Lozano-Prez 13] developed a method ror computing more directly

with the curved surfaces of the grown obstacles. The algorithm can be quite expensive

although given enough time and space it can find a path if one exists.

1.2 Good representations simplify Find-Path.

The algorithm presented in this paper is based on a different idea; that of using rep-

resentations of space which capture the essential effects of translating and rotating a body

through space. Free space is represented as overlapping generalized cones since they are

descriptions of swept volumes. The cones provide a high level plan for moving the object

through space. The volume swept by the particular object as it is translated and rotated

is characterized as a function of its orientation. Find-path then reduces to comparing the

swept volume of the object with the sweepable volumes of free space. This is done by

inverting the characterization of the volume swept by an object, to determine its valid

orientations as it moves through a generalized cone.

Throughout this paper we restrict our attention to the two-dimensional problem where

the object to be moved is a convex polygon and the obstacles are represented as unions of

convex polygon.
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2. Describing Free Space as Generalized Cones

Generalized cones are a commonly used representation of volume for modelling ob-

jects in artificial intelligence based computer vision systems. They were first introduced by

Binford 121. A generalized cone is formed by sweeping a two dimensional cross section along

a curve in space, called a spine, and deforming it according to a sweeping rule.

In this paper we will consider a two dimensional specialization of generalized cones

(although we will still refer to them as volumes). The spines will be straight and the cross

sections will be line segments held perpendicular to the spine with left and right radii.

The sweeping rule will independently control the magnitudes of the left and right radii as

piecewise linear functions.

Free space is represented as overlapping generalized cones. Natural "freeways", elon-

gated regions through which the object might be moved, are represented as generalized

cones. The generalized cones overlap at intersections of these natural freeways. Figure I

illustrates a few of the generalized cones describing the free space around two obstacles in

a confined workspace.

2.1 Candidate generalized cones.

A representation of free space is constructed by examining all pairs of edges of obstacle

polygons. If the edges define a natural "freeway" through space they are used to construct

a generalized cone.

Each edge has a "free" side and a "full" side, where the "free" side is the outside of the

particular polygon with w hich it is associated. Each edge has an outward pointing normal,

poipting into the "free" sid4' Two edges are accepted as defining a candidate generalized

coniif they meet the following two requirements. (1.) At least one vertex of each edge

.should be on the "free" sidp of the other. (2.) The dot product of the outward pointing

nornmals should be negative. The second condition ensures that the "free" sides of the two

4
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Figure 1. A few of the generalized cones generated by two obstacles and the workspace
boundary.

edges essentially face each other. Thus in this initial stage there is a complexity factor of

0(n 2), where n is the number of edges of obstacle polygons.

Given a candidate pair of edges, a spine is constructed for the generalized cone. It is the

bisector of the space which is on the "free" side or both edges. (Thtus if the edges are parallel

the spine is parallel to themn both, and equidistant, or if the edges are not parallel then the

spine bisects the angle they form.) The generalized cone occupies the volume between the

two deining edges. At each vertex of the two edges (if the vertex is on the "free" side of

the other edge) the cone is extended parallel to the spine.

The generalized cone so defined may not lie entirely in free space. There may be other
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Removed

Figure 2. Slices of the generalized cone removed due to obstacles.

obstacles which intersect it. Each obstacle is compared to the generalized cone. A polygon

can be intersected with the cone in time O(n) where n is the number of edges of the polygon.

If the intersection is empty then nothing further need be done. If not then the intersection

is projected normally onto the the spine of the generalized cone. This is illustrated in figure

2. Again this is an O(n) operation in the number of vertices (and hence edges). The result of

comparing all obstacles to the generalized cone is a set of regions of the spine where there is

no obstacle which intersects the cone in a slice normal to the spine. Each disjoint slice which
includes parts of the original two edges is then accepted as a generalized cone describing

part of free space.

Clearly the complete operation of describing free space is at most O(n3) in the number

of edges in the obstacle polygons.
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Figure 3. A generalized cone defined by 1, bt, br, s, st, m and c.

2.2 The representation used for generalized cones.

Figure 3 shows the complete representation used for cones describing parts of free space.

There is a straight spine, parameterized over the range I E [0, 1] where I is the length of the

cone. If the sides of the cone are not parallel to the spine then t = 0 corresponds to the

wider end.

On both the left and right the maximal radii achieved over the length of the cone occurs

at t = 0 and are denoted b and b, respectively, describing the "big" end of the cone. The

minimal radii achieved occur at i = I and are denoted 4 and sr, describing the "small" end

of the cone.

If b, = , and b, = s, then the two sides of the cone are parallel to the spine. If not, then

there is a symmetric thinning of the cone (which may start, and end, at different values of
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t on the left and right) where the left and right radii of the thinning parts of the cone are

both given by the expression mt + c where m and c are constants. Note that it is always

the case that m < 0 and c > 0.

In summary, the seven constants 1, b, bi, a,, m and c completely specify the shape

and size of the generalized cone. In addition its location and orientation must be determined

concurrently with computing these parameters.

3. Determining Legal Orientations

Let the moving object be called A. It is a convex polygon and has vertices a,, a2 ,

a,,. Choose an origin and z and y axes. Let di be the distance of vertex ai from the origin.

For optimal performance of the find-path algorithm the origin should be chosen so that

maxli d is minimized over possible origins. The direction of the x-axis can be chosen

arbitrarily.

Orientations relative to A are defined in terms of an angle relative to A's z-axis. Thus

a point's angle relative to A is the angle made by a ray from the origin to thi point, relative

to the z-axis. A direction relative to A is the angle made by a vector in that direction with

*! A's z-axis.

Let il, n2, ... , 17,, be the angles of the vertices a,, a2, ... , a,.

A 3.1 The radius function of a polygon.

Consider first the problem of determining the volume swept by a polygon as it is moved

in a straight line with fixed orientation. Let the object be moving in direction 0. The swept

volume depends on the object's cross section perpendicular to that angle. The cross section

can be broken into two components; that on the left of the direction of movement, and that

on the right. Figure 4 illustrates.
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Figure 4. Volume swept by an object during pure translation.

Define a radius function R(e) to be the infimum of the distance from the origin that a

line which is normal to a ray at angle can be without intersecting the interior of A. Figure

5 illustrates. (The radius function is closely related to the support of a convex polygon -

e.g. see [1].) The magnitudes of the left and right cross sections of figure 4 can then be

denoted R(O r- r/2) and R(O - 7r/2) respectively.

Figure 6 shows the geometric construction of R(E) for a given object A and angle .

The darkened outline in figure 7 shows the radius function R in polar coordinates for the

same object. Thus R can be defined by

R(e) = max dicos(e - ri).

The major interest in functions of this form will be in their inverse images of intervals

of the form (-oo, r]. Let

Tu--( i I R(e) <} .

Thus R-L(r) is the range of angles at which the cross section of object A is no more than r.
The inverse image can be easily computed by using the two values possible for arccos(r/di)

for each i to form an interval containing ih and subtracting it from the interval 10, 21r].

We restrict our attention to moving objects which are convex polygons precisely because

their radius functions can be so easily inverted.
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Figure 5. Definition of R(C).

a2a

d2  
a,

tn- 7,) 0 . .

a3

a 4

R(C) = d2 coS( -7 2)

Figure 6. Geometric construction of R(C).

• i

Figure 7. R(k) in polar coordinates.
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If we write R,(E) = R(E + a) then the legal orientations of A relative to Ihc direction

of its movement down the center of a strip of diameter d can be written as

L = R, 2 (d/2) 0 R-L,/ 2(d/2).

Note that while L may consist of more than one interval, the set of orientations taken by

A, in some trajectory along the length of the cone, must form a connected set - i.e. it must

be a single interval, and so must be contained in a single interval of L.

Finally note that the sum of two radius functions has the same form as a radius function,

and so the "_L" operation can be computed just as easily on the sums or such functions as

on single functions. I.e. with R as above and

S(E) = max ei cos(E - t'i)
l~i~m

then

[R + S](E) = R(E) + S( ) m rax (di cos(E - r,) + ej cos(E -/j))

and each term inside the "max" can be written in the form fj cos(e -Mij).

3.2 Bounding polygons with an appropriate rectangle.

In general we wish to find the legal orientations for object A when its origin is at a

point with spine parameter t on the spine of a generalized cone C. A conservative set of

orientations can be found by enclosing A in a rectangle which has two of its sides parallel to

the spine of C. When A is oriented so that the spine has angle 0 relative to it, the bounding

rectangle has the following properties. Its extent forward (in the direction of increasing spine

parameter) from the origin is R(O). Its extents left and right are R(O + 7r/2) and R(O - 7r/2)

respectively. Its extent to the rear is (rather conservatively) d = max1<i<,di. Figure 8

illustrates. The problem now is to invert this bounding operation - i.e. to find for what

range of 0 the bounding rectangle is within the generalized cone. That is for each t E [0,11

we wish to find a range of valid 0, denoted V(t) for orientations of the object A.

11
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~Bounding rectangle

Figure 8. An object A is bounded by a rectangle aligned with the spine of cone C.

The rear of the bounding rectangle simply implies V(t) = 0 outside of the interval

[d,L]. The forward bound implies

V() g; R-L(I - t).

The parallel sides of the "big" part of the generalized cone imply upper bounds on the width

of the bounding rectangle. Thus

V(I) C (R(b) - 7/2) n (R±(b,) + w/2).

Note that the terms on the right involve adding a constant to a subset of [0, 27r] in the
obvious way. Let V' be defined as

V'(t) = R-L( - t) n' (R"Lb) 4- *12) rn (R-(br) + 7r/2)

:Aover the interval [d, 1].

Subject to the above three constraints the rectangle can everywhere be as big as one

which will fit in the "small" part of the generalized cone. Thus

((R±(1 ) - I2) r) (R'(4) + w/2)) r V'(t) C_ V(t).

12



Furthermore, subject to V'(t), any orientation of A is valid which tesults in a bounding

rectangle that is within the bounds given by the decreasing boundaries or tile generalized

cones. Recall that at each point of the spine, with parameter t, these boundaries have both

left and right radius of mt + c and that m < 0. Thus sufficient conditions are that

R(O + w/2) m m x (t + R(O)) + c
R(O - 7/2) <m X (t + R(O)) + c

are both true. These can be expressed as

[R./ 2 - mR](O) ! (mt + c)

[R-,/2 - nR](0) :__ (mt + c)

whence

([R,/2 - mR]-(mt + c) n IR-.,/ - mJl±(mt + c)) n V'(t) g V(t)•

In summary then, over the range t E Id, 1], a valid subset of orientations for A can be

expressed as

V(t) =R--(l -t) n (R+(b) - v/2) r) (R-(b,) + w/2)

n (((R-(s) - 7r/2) n (R-(r) + ir/2))

U ([R,/ 2 - mRJ-]'(mt + c) nJ R./ 2 - i-vL(mt + c))

and elsewhere V(t) = 0. The key property of V(t) is the following.

LEMMA: For t1, t2 E [d,l], t1 2 implies V(t 2) 9 V(ti).

Note that V(t) does not necessarily include all possible orientations for object A to
be contained in cone C at point with paremeter t along the spine. However it the set of

possibilities which the find-path algorithm described here is willing to consider. Its key

property is that as stated by the lemma the set of valid orientations (amongst those to be

considered) does not increase as the object is moved from the "big" end to the "small" end

of a generalized cone.
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1.5

Figure 9. A path found by the algorithm.
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Figure 10. A path found by the algorithm.
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4. Searching for a Path

The algorithm to find a collision free path proceeds as follows. First the generalized

cones which describe free space are coomputed (this can be done in time O(nrv)). Next the

cones are pairwise examined to determine if and where their spines intersect. Up to this

stage the algorithm is independent of the object A to be moved through the enviroinment.

Each spine intersection point for each cone is now annotated with the subset of [0, 2W)

which describes the orientations for the object A in which it is guaranteed to be completely

contained in the generalized cone. The final stage of the algorithm is to find a path from the

initial position to the goal position following the spines of the generalized cones and changing

from cone to cone at spine intersection points. If the object is kept at valid orientations at

each point on each spine then the path will be collision free.

4.1 A searchable graph.

A graph is built then searched with the A* algorithm (see Nilsson [71). The cost function

used is the distance traveled through space.

The nodes of the graph consist of points on generalized cone spines which correspond

to points of intersection, along with a single orientation subinterval of 10, 21r] (except that

intervals may wrap around from 2w to 0). Thus for an intersection point with parameter t

on the spine of cone C, a node for each interval in V(Q) is built.

The arcs in the graph arise in two ways; those that correspond to transfer from one
intersection point on a spine to another, and those that correspond to transfer from one

spine to another at their common intersection point. All such candidate pairs of nodes are

checked for connectivity. The lemma of section 3 guarantees that it suffices to check if the

orientation intervals of the two nodes, for intra-cone arcs, have a non-empty intersection.

If so, then it is certainly possible to move the object A from one point to the other using

any orientation within that intersection. For inter-cone pairs of nodes it also suffices to

check for non-empty intersection of their orientation intervals, as the points are coincident

16



in space.

The graph can now be searched to find a path consisting of an ordered set of nodes

from initial position to goal position.

4.2 Intermixing rotations and translations.

If the graph search is successful it indicates a whole class of collision free paths. It

remains to chose one particular trajectory.

The class of paths found share a common trajectory for the origin of the moving object.

The orientation interval associated with each node of the path through the graph constrains

the valid orientations at that point. It is also necessary to ensure that no invalid orientation

is assumed during translation and rotation along the spine of a generalized cone.

It may well be the case that rotations are expensive, and it is worth searching the class

of paths resulting from the graph search to find the optimal path in terms of least rotation

necessary. This could be carried out using the A* algorithm. Every node in the path found

in the first search would be turned into a collection of nodes. Each pair of adjacent nodes

in the path found above would have their orientation ranges intersected. Combine each

end value of each intersection, and the initial and final orientations into a set of possible

orientations. Each orientation which is valid for a particular path node, along with that

node, generates a node in the new graph. Adjacency would be inherited from adjacency of

generating nodes in the original path. The A* agorithm is used to search this new graph.

Figures 9 and 10 illustrate two paths found by a much simpler method. Rotations

are restricted to points corresponding to nodes of the path - i.e. the object is held with

fixed orientation during each translation. The orientation at each point is the midpoint of

the orientations given by intersecting the allowed orientation intervals of the corresponding

path node, and the subsequent node. Thus traversal of intra-cone arcs of the graph built

above are rotation free, and traversal of inter-cone arcs are pure rotations. The lemma of

17
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section 3 guarantees that this strategy leads to valid collision free paths.

5. Usefulness and Applicability

The major drawback of the find-path algorithm presented in this paper is that paths

are restricted to follow the spines of the generalized cones chosen to represent free space. It

typically does not work well in tightly constrained spaces as there are insufficient generalized

cones to provide a rich choice of paths. Furthermore, in a tight space the interior points

of spines are always near to the spine ends. Therefore the need to extend the bounding

rectangles rearward to the maximum possible distance for the moving object (so that the

lemma of section 3 will hold) means that typically there are very few points of intersections

of generalized cones where the object's bounding rectangle in each orientation is contained

within the appropriate generalized cone. This situation could be improved significantly by

developing a better algorithm for decomposing free space into generalized cones. The current

pruning technique is often too drastic - if an obstacle intersects a generalized cone it may

be better to simply reduce the cone radius, rather than the current practice of slicing out

all of the spine onto which the obstacle projects.

5.1 Advantages.

In relatively uncluttered environments the algorithm is extremely fast. Furthermore it

has the following properties which are absent from some or all of the algorithms mentioned

in section 1.

- 1 1. The paths found, and the amount of computation needed are completely independent of

the chosen world coordinate system.

2. Obstacles affect the representation of free space only in their own locality. Thus addi-

tional obstacles spatially separated from a free path found when they are not present can

not affect the ability to find that free path then they are present. (Resource limited, and

approximating algorithms which cut free space into rectangloid cells often suffer from this

18



problem.)

3. Free space is represented explicitly rather than as the complement of forbidden space.

4. The paths tend to be equally far from all objects, out in truly free space, rather than

scraping as close as possible to obstacles, making the instantiation of the paths by mechanical

devices subject to failure due to mechanical imperfections.

We plan to use this algorithm in conjunction with an implementation of an algorithm

([3]) which finds paths with rotations based on a configuration space approach. The general-

ized cone method will be ua',d t, find the easy parts of the path (the other method is

computationally expensive both for easy and hard paths) leaving the more expensive method

for the hard parts. The Algorithm presented here can also provide some direction for the

hard parts as it can quic;ly compute all topologically possible paths.

5.2 Three Dimensions.

Clearly the eventual goal of this work is to develop algorithms which solve the find-

path problem in three dimensions with three rotational degrees of freedom for each link of

general articulated devices. In this section we discuss approaches to extending the presented

algorithm to the case of a single convex polyhedron moving through a space of polyhedral

obstacles.

Three dimensional generalized cones can be constructed by considering all triples of

faces of obstacle polyhedra. The construction algorithm (including intersection with obstacle

polyhedra) has complexity O(n4) in the number of obstacle faces. The generalized cones

so constructed will have triangular cross-sections. It is not clear how to pairwise intersect

the generalized cones, as in general their spines will not intersect. The "path-class" idea

presented below may solve this problem.

Rather than a bounding rectangle, a right triangular prism should be used where the
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triangle is similar to the cross section of the generalized cone being traversed. If more than

one rotational degree of freedom is assumed there may be problems inverting this bounding

volume. Rather than V(t) having a set of intervals as a value, it will have a set of three-

dimensional polyhedra.

Both for the two dimensional and three dimensional problems it is worth investigating

using paths other than the spine through a generalized cone. Then V is parameterized in

terms of t and the two end-points of a whole class of paths through individual cones. This

increases the complexity of the search but will lead to more paths than simply using the

spine.

5.3 Complexity Issues.

In discussions with Tomis Lozano-P6rez it became evident that there exists an O(n2cN/F ' )

algorithm which can find the same generalized cones as does the 0(n 3 ) algorithm presented

here. The spines used for generalized cones correspond to the Voronoi boundaries between

obstacles (see Drysdale [4] for a complete solution to the problem), and they can be found in

0(ncJ%/i-) time. There remains a factor of O(n) to do the intersection of the hypothesized

generalized cones with other obstacles. It is unlikely that such an algorithm would perform

better than the O(n3) algorithm presented for practical sized problems.

The complexity of pairwise intersecting the generalized cones was not addressed in the

body of the paper. An upper bound of O(n 4 ) can easily be obtained as there are at most

0(n') generalized cones to be considered. However, it seems hard to fir d a constant where
-:. ¢n2 generalized cones can be acheived constructively as the number of obstacle polygons is

- increased. For any c it seems that space eventually tends to become too cluttered for all

*' the cones to be constructed. Thus it seems likely that a better bound than 0(n 4 ) exists. (In

fact the Voronoi complexity above suggests a bound of O(n2c2V;').)
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